The Role of Joint Control In Teaching Complex Listener Behavior to Children with Autism

Kaitlin Causin Kristin Albert,
Vincent J. Carbone Emily Sweeney-Kerwin
Carbone Clinic

www.CarboneClinic.com

33rd Annual Conference of the
Berkshire Association for Behavior Analysis

Campus Center
University of Massachusetts- Amherst
Amherst, MA

October 11-12, 2012

• Skinner’s (1957) analysis of verbal behavior offered an alternative to the prevailing structural conceptions of language in which words and sentences (i.e., formal properties of language) were considered the important units of analysis.

• Whereas structural accounts emphasized the topography of language (e.g., syntax, grammar, morphemes, mean length of utterance, etc.), Skinner’s behavior analytic account identified the functional relation between a response and its controlling variables, or the verbal operant, as the important unit of analysis.

• This behavior analytic account of language suggests important implications for the treatment of children with autism and other developmental disabilities (Sundberg & Michael, 2001) and a growing body of clinical work and research has documented the value of including this taxonomy in language training programs (see Sautter & LeBlanc, 2006 for a review).
• Much of this literature, however, has focused on the application of Skinner’s analysis to teaching **speaker behavior**, with less work dedicated to a thorough analysis of the contingencies operating on the **behavior of the listener** (Schlinger, 2008).

• Possibly due to this lack of attention, cognitive explanations that describe the listener as a “passive receptacle” (Schlinger, 2008, p. 149), “recipient” (Lowenkron, 1998, p. 339), or “processor” of information (Sidener, 2006) have persisted.

• Although Skinner’s (1957) analysis emphasized speaker behavior, he **did not ignore the listener**. Skinner suggested that the control exerted by verbal stimuli was at least partially dependent upon the **listener having an existing verbal repertoire of speaker behavior**.

• He stated, “….some of the behavior of listening resembles the behavior of speaking, particularly when the listener understands what is said” (Skinner, 1957, p. 10).

• Schlinger (2008) extended Skinner’s analysis of listener behavior and refined the difference between listener behavior **as a repertoire of discriminated operants** (i.e., mediation of reinforcement for a speaker) and “listening.”

• Schlinger asserted that listening is behaving verbally. He stated, “….the behavior of listeners and speakers may be inseparable, especially when we say the listener *listens, pays attention to, or understands the speaker*” (p.148).
• Schlinger argued that, in fact, listening and speaking may not be functionally different. “In other words, the listener also behaves verbally when he or she is said to be listening” (Schlinger, 2008, p.150).

• All of this suggests that listening may be predicated upon a complex verbal repertoire that mediates listener responses.

• Lowenkron (1998) defined joint control as “the effect of two [discriminative stimuli] SDs acting jointly to exert stimulus control over a common response topography” (p. 328–329).

• Lowenkron (1998) stated:

 “Joint control occurs when the currently rehearsed topography of a verbal operant, as evoked by one stimulus, is simultaneously evoked by another stimulus. This event, the onset of joint stimulus control by two stimuli over a common response topography, then sets the occasion for a response appropriate to this special relation between the stimuli. (pp. 327)”

In other words, one verbal response is simultaneously emitted under two distinct sources of stimulus control.

For example, two possible sources of control are: (1) a verbal stimulus that evokes an echoic or self-echoic and (2) a nonverbal antecedent SD that evokes a tact.
• The emission of a single verbal response under two joint sources of stimulus control is a unique event that then exerts control over a third response, typically a selection response or listener response. According to this analysis the selection response is mediated by the verbal responses.

• Let’s do an activity that will illustrate the role of joint control in listener responding.

An Example of Joint Control
Steps to Selecting the Correct Response

Describe or name the sample nonverbal stimulus:
“horizontal oval, space, down arrow, space, horizontal rectangle”
(TACT)

Rehearse the TACT during the delay period:
“horizontal oval, space, down arrow, space, horizontal rectangle”
“horizontal oval, space, down arrow, space, horizontal rectangle”
“horizontal oval, space, down arrow, space, horizontal rectangle”
(SELF-ECHOIC)

Scan the array of comparison nonverbal stimuli and describe or name each one:
A. “horizontal rectangle, space, down arrow, space, horizontal oval” (TACT)
B. “horizontal oval, space, up arrow, space, rectangle” (TACT)
C. “horizontal oval, space, down arrow, space, horizontal rectangle” (TACT) + (SELF-ECHOIC)
D. “horizontal oval touches down arrow touches horizontal rectangle” (TACT)

TACT + SELF-ECHOIC jointly controls selection response of comparison stimulus C.

SAMPLE
Find the “white circle”

Echos “white circle”

& Self-Echos While Scanning the Array of Comparison Stimuli

COMPARISON

Tacts Each Figure
Only the “white circle” Allows the Unique Condition of Emitting the Echo and Tact Simultaneously

Joint Stimulus Control
Through this analysis, it is easily seen that the listener response of selecting the correct comparison stimulus was dependent upon speaker behavior, specifically tact and self-echoic responses.

If the listener did not already have strong tact and self-echoic repertoires, it would be extremely difficult, if not impossible, for this type of delayed listener response to occur.

This suggests that complex listener behavior may be dependent upon a speaker repertoire (Schlinger, 2008).

By analyzing how speaker behavior mediates and evokes listener behavior, an analysis of joint control provides an evidence-based and conceptually systematic explanation of listener behavior, without reliance on cognitive processes and structures.

Furthermore, an explanation of joint stimulus control falls within the confines of Skinner’s (1957) analysis of verbal behavior, not only with relation to his descriptions of the elementary verbal operants, but also with relation to his descriptions of multiple causation (multiple control) and descriptive autoclitics.

It is suggested that typical children’s responding comes under joint control without programmed instruction by parents or teachers.

Lowenkron (1997, 1998) suggested that by the age of three, children have acquired three repertoires; unmediated stimulus selection, echoic, and tact.

Lowenkron proposed that at a certain point in language development these three repertoires begin to interact, resulting in complex linguistic behavior.

Michael (1996) and Lowenkron (1997, 1998) suggested that in increasingly complex environments,

1. the emission of echoic and self-echoic behavior, after a caregiver’s instruction to find or retrieve an item, would be reinforced by improved accuracy in locating the named item.

2. If the child then encounters a nonverbal stimulus that evokes a tact response of the same topography as the simultaneously emitted self-echoic, joint control occurs.

3. If the child selects that nonverbal stimulus due to previously acquired listener behavior, responding in the presence of the onset of joint stimulus control would be adventitiously reinforced.

4. Repeated occurrences of this arrangement would lead to generalized responding to joint control events and consequently lead to the performance of various complex behaviors.
• This analysis provides the basis from which potential teaching procedures for children with autism can be derived.

• Presently, there are only one published and one unpublished applied studies on the benefits of joint control training for children with autism.

• Tu (2006) examined the importance of joint control when teaching responses to experimenter vocal requests to both vocal and nonvocal children.

• She found that tact and echoic training were insufficient to produce listener selection responses.

• Only after joint control training did the participants improve their selection response.

• In an unpublished dissertation, degli Espinosa (2011) examined the effects of a teaching procedure derived from a joint control analysis on the selection of picture sets composed of color and item combinations for three children with autism.

• The joint control teaching procedure required that participants simultaneously emitted self-echoic and tact responses prior to emitting selection responses.

• The results of this study indicated that the joint control training procedures utilized led to correct selection of trained stimuli and generalized responding across novel stimulus sets.

• To extend the research on this topic with children with autism the purpose of this study was to teach children with autism who emitted limited listener response repertoires to select multiple pictures of items from a large array in the order in which they were requested (e.g., “Give me the ball, cup, and spoon”).
METHOD

Participants and Setting

- There were three participants in this study.

- All participants demonstrated echoic/mimetic, tact, and intraverbal repertoires that fell within the 18-30 month level of the VB-MAPP (Sundberg, 2008).

- All participants were enrolled at a private clinic that provides one-on-one instruction that was guided by the principles of applied behavior analysis and incorporated Skinner’s (1957) analysis of verbal behavior.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobby</td>
<td>Six-year-old male diagnosed with autism who was enrolled for about 15 hours per week. Non-vocal learner who used manual sign language as his primary means of communication.</td>
</tr>
<tr>
<td>Connor</td>
<td>Fourteen-year-old male diagnosed with Pervasive Developmental Disorder (PDD) and Attention Deficit Hyperactive Disorder (ADHD) who was enrolled at the clinic for about eight hours per week. Vocal learner</td>
</tr>
<tr>
<td>Andre</td>
<td>Seventeen-year-old male diagnosed with autism who was enrolled for about 15 hours per week. Vocal learner</td>
</tr>
</tbody>
</table>
Stimulus Sets

• Choice of stimulus sets of pictures of items was the dependent variable in this study. Therefore a pool of 12 previously mastered tacts and listener selection responses were combined to form 50 stimulus sets containing three or four pictured items in each set. The number of pictured items within each set varied for each participant based on pre-baseline assessment of skill levels.

Response Definitions and Data Collection

• Two dependent variables in this study:
 – Cumulative frequency of untrained stimulus sets acquired (baseline and generalization).
 – Cumulative frequency of trained stimulus sets acquired (based on daily first trial probes in the training condition).

• Correct response: Selecting all pictured items that correspond to the spoken items named by the instructor (i.e., vocal stimulus), in the same order in which they were presented by the instructor; the response was completed within 20 seconds of the presentation of the vocal stimulus and included a full 1 second pause following the selection/delivery of the final item.

• IOA and treatment fidelity measures were all within acceptable ranges.
Incorrect response: Selecting pictured items that did not correspond to the vocal stimulus OR selecting the incorrect number of pictured items OR selecting pictured items that correspond with the vocal stimulus in a different order than which they were presented OR emitting a response beyond the established time criteria (20 seconds) OR initiating a response before the completion of the vocal stimulus OR failing to respond.

PROCEDURES

Experimental Conditions

1. Baseline- probes of all 50 sets were conducted during each day of baseline according to the probe procedures described in the next slide. A correct response during any probe during baseline was the criterion for acquisition and the set was removed from the group of 50.

2. Probes for trained and untrained and untrained sets occurred each day during treatment. A correct response on the first presentation of a stimulus set was the criterion for acquisition. During training probes acquisition required two consecutive daily probes to meet acquisition criterion.
Trained and Untrained Probe Procedures

- Shuffles 12 nonverbal stimuli and presents in messy field on table.
- Presents vocal stimulus (e.g., "Give me the A, B, and C") with flat hand up, palm facing participant.
- Drops hand so that palm is facing upwards (as if to receive picture cards).
- Emits response:
 - Correct response
 - Incorrect response
- Keeps hand in position for 20 s after presentation of vocal stimulus or for 1 s past the delivery of the last picture card required.
- Presents 3 previously mastered skills (easy, yes, go), or presents previously mastered skills, the next untrained probe trial, or stands 10 s then turns the field (untrained probe).
- Delivers reinforcer.

Joint Control Training Procedures

- Shuffles 12 nonverbal stimuli and presents in messy field on table.
- Presents vocal stimulus (e.g., "Give me the A, B, and C") with flat hand up, palm facing participant.
- Prompts to evoke rehearsal response.
- Emits rehearsal response:
 - Correct rehearsal
 - Incorrect rehearsal
- 1-2 s pause then re-presents the vocal stimulus (e.g., "Give me the A, B, and C") with flat hand up, palm facing participant.
- Re-sets participant's hands, turns for 1 s, time out.
- Emits selection response and hands over picture cards to the instructor.
- Correct selection
- Incorrect selection
- Keeps hand in position for 1 s past the delivery of the correct picture cards, in the correct order, within 10 s of the presentation of the vocal stimulus.
- Delivers reinforcer.
General Procedures

• Each time acquisition criteria were met for a trained stimulus set, a probe of all remaining untrained stimulus sets was conducted until all the sets were recorded as either trained or untrained.

VIDEOS OF PROCEDURES

• What follows are video illustrations of each of the phases of the experiment.

Experimental Conditions

• Baseline Condition
 – Baseline Procedures (Bobby Video)

• Treatment Conditions
 – Joint Control Training Condition
 • Vocal Learner Teaching Procedures (Andre Video)
 • Non-Vocal Learner Teaching Procedures (Bobby Video)
 • Error Correction Procedures (Connor Video)
 – Joint Control Training with Rehearsal Condition
 • Vocal Learner Rehearsal Training Procedures (Andre Video)
 • Non-Vocal Learner Training Procedures (Bobby Video)
Results

- In total, Billy acquired a 22 trained stimulus sets and 28 untrained stimulus sets across 120 joint control training condition sessions.

- In total, Cole acquired 20 trained stimulus sets and 30 untrained stimulus sets, across 96 joint control training sessions,

- Across 206 joint control training sessions, Abe acquired 26 trained stimulus sets and 24 untrained stimulus sets.

Figure 4. The cumulative number of trained and untrained stimulus sets acquired during baseline and joint control training.
Private Nature of Responses

- The private nature of the jointly controlled responses blocks direct observation and therefore leads to an interpretive analysis of the role of joint control.

- In this experiment the children were not required to emit overt tact responses and therefore the additive effects of the tact response can only be inferred.

- In prior studies however, blocking of one of the responses necessary for joint control substantially degraded correct responding suggesting that covert responses appear to be playing a role in the additive effects of more than one stimulus leading to the listener response.

- Throughout this study there were instances in which the child emitted the overt response with no requirement or when he failed to emit an overt tact response appeared to interfere with responding leading to response errors.

- Video demonstrations of this follow.

- Frequently during both daily first trial probes and untrained stimulus set probes, Bobby was observed to respond intraverbally to the teachers vocal stimulus and preserve the stimulus through self-mimetic behavior even when he was not explicitly required to do so. (Bobby Video)

- Prior to beginning training with rehearsal, Connor did not emit an overt self-echoic response during first trial and untrained probes. Following training with rehearsal, Connor always engaged in a self-echoic rehearsal, even when he was not required to do so by the experimental contingency (i.e., during untrained probes). (Connor Video)

- Andre engaged in a self-echoic rehearsal during both training and untrained probe conditions. When Andre engaged in the correct self-echoic rehearsal response (i.e., echoing the instructor), he always selected to correct stimulus set, suggesting that the self-echoic rehearsal contributed to the correct selection response. (Andre Video)
Clinical Applications

• In this experiment the emission of a single response topography occurring under two different sources of control (i.e., echoic and tact or mimetic and tact) occasioned selection responses.

• Given this analysis, the onset of joint control was a generic event consisting of the simultaneous control of two discriminative stimuli over a single response.

• The results of this study indicated that joint control training was effective in increasing trained and untrained listener responses for the three participants involved.

• Typical children may acquire this repertoire through exposure to every day contingencies however children with autism may require precise teaching to acquire jointly controlled responses.

• A number of authors have expounded upon the advantages of a joint control analysis, not only as an explanation for complex human behavior (Lowenkron, 1998), but as a means by which to design language training programs for individuals with language deficits and delays (degli Espinosa, 2011; Michael et al., 2011; Sidener, 2006; Tu, 2006).

• As an example of mediated stimulus selection joint control training provides an efficient method of teaching generalized responding to children with autism that would require a virtually impossible number of trials to achieve the same outcome. (Sidener, 2006)
Within autism treatment programs skills that are often acquired under the title of “auditory and visual memory” or cognitive skills may actually be acquired through the unwitting effects of the type of verbal mediation that was explicitly taught in this study.

The list of skills that may be taught using methods derived from a joint control analysis include: delayed match to sample of an array of items, completing a complex pattern of items, finding a previously displayed item within a large array, identifying what is missing from a previously displayed array of items, following multiple step instructions, answering yes or no, and counting out a specific number of items from a larger set.

In general, when mediating responses (self-echoic, self-mimetic, and tact responses) were overt, correct selection of the stimulus set was more likely. Similar to the studies performed by Gutierrez (2006), Lowenkron (2006b), and DeGraaf and Schlinger (2012), future research should experimentally investigate the individual roles of echoic, self-echoic, and tact responses to provide additional empirical evidence in favor of a joint control analysis.

Multiple Control

Michael et al. (2011) identified joint control as a special case of convergent multiple control, defined as “the convergent control of a response of a particular topography by two concurrent variables” (p. 21).

Michael et al. (2011) and Palmer (2006, 2010) asserted that the convergent control of two or more stimuli extends beyond joint control events and suggested that changes in salutation of response strength may provide a ubiquitous and plausible explanation for the more general phenomena of multiply controlled responses.

Palmer (2006) suggested that at any given moment interaction with environmental stimuli strengthens a host of possible responses but weak stimulus control or strong competing responses may prevent emission.

The onset of some additional stimulus, however, may strengthen previously potentiated response forms and cause a discriminable “jump” in response strength, leading to response emission.

Consistent with Lowenkron’s (1998) analysis, Michael et al. (2011) suggested that the occurrence of joint control is a “discriminable event that would control a selection response” (p. 21).
Primacy of Topography-Based Verbal Behavior

- For one participant the response form was manual sign language, suggesting the applicability of these procedures to nonvocal children for whom alternative communication systems are necessary.

- An important point, however, is that responding to joint control events depends upon topography-based verbal behavior (e.g., vocal, manual sign language, writing) (Lowenkron, 1991).

- Consequently, selection-based methods of communication such as the Picture Exchange Communication System (Bondy & Frost, 2002) or icon selection using a touch screen device preclude the occurrence of responding under the control of joint control events.

Finally, Palmer (2006, p. 214) discusses the important role joint control plays in the control of human behavior and notes the general lack of recognition it has previously been given by behavior analysts:

“Joint control is a tool in the workshop of the behavior analyst who would understand complex behavior. It is not a new phenomenon, nor does an analysis of joint control invoke new principles. It has been lying in the toolbox all along, but we are only beginning to appreciate its role in the control of human behavior. I believe that it will have a distinguished future.”
To Obtain a Copy of This Power Point

Go to CarboneClinic.com

Select the Resources Tab
And Then BABAT Folder

References

